CREEP OF INITIALLY ANISOTROPIC UNHARDENED MATERIALS

O. V. Sosnin

Utilizing the hypothesis of the existence of a creep-strain-rate potential and assuming it a function
of the mixed invariant of the stress tensor and the tensor of the anisotropic characteristics of the material,
we show the possibility of an approximate description of the steady creep of a certain class of anisotropic
materials, and we carry out an experimental verification of the dependences obtained for the case of creep
of tubular samples under tension and torsion.

1. The steady creep of materials under uniaxial loading is usually described by dependences of the
form

n = Bo™, n= Ke® (1.1)

Here 7 is the creep strain rate, ¢ is the stress, B andn or K and B, respectively, are the experi-
mental characteristics of the material. Anisotropy in the behavior of a material in a description of creep
can be manifest both in a change of one of the characteristic quantities in (1.1) depending on the orientation
of the applied loading vector in the solid and in their simultaneous variation.

Let us examine a simpler case of anisotropy when the characteristic B or K, respectively, changes
in (1.1) and the material behaves identically under creep tension and compression. The creep of such ma-
terials can be described by introducing a strain-rate potential in the form

Ti\m . oD
Dy = (—k?l-) (S) /o +1)’ Nij =bd—,;- (1.2)
if the first of the dependences (1.1) is taken as the initial dependence and
Ty \m o,
®p = (‘S—z) exp B8™) =79?,‘“i:.
8 =303°6;5°, 04" = 65— Y3 8i;5x (1.3

T1 = A1 (G2 — 633)? -+ Apa (683 — 611)% 4 Ass (611 — 622) + 2A419619% -+ 2A23508% - 2Amoa®
if the second of the dependences (1.1) is taken as initial dependence.

Here T, has an analogous form with other coefficients Ajj. Hence, in conformity with the structure
of (1.1), the potential functions (1.2) and (1.3) consist of the product of two functions: a homogeneous func-
tion of zero power in the stresses (T/S)™ taking into account the anisotropy
of the material in terms of the coefficient B or K, and a power-law or ex~

w1 11 \ge
4 ponential function with' isotropic characteristic n or 8y. Exponent m can be

2.5

2 2
/ v 470 selected arbitrarily; in particular, it is expedient to take m =1/, (n+1) in(1.2)
20 7 -0 and m=1 in (1.3), and the dependences (1.2) and (1.3) finally become
/,
35 7// ,?/ 15 Dy = Tllls('nﬂ), g = 0Dy [ sy (1 .4)
’/ / @z = exp (B15"%) T2/ S, 155 = 8@ / 855 (1.5)
40 L/ 0 Figure 1 presents, in a logarithmic coordinate system, results of ex-
},/’ periments in the form of a dependence of the magnitude of the steady creep
Y7 ur 08 49 ”‘” rate in the axial direction de/dt = ny4 on the stresses in tubular samples under

Fig. 1 pure tension (upper graph) and of the shear rate dy/dt = 2n¢, on the magnitude
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Fig. 2

of the tangential stress 1 under pure torsion (lower graph). Tubular samples

of 20 and 18 mm outer and inner diameter, respectively, and 80 mm length of
the working section were fabricated from a 30-mm-diameter D16T rodandtested
at a 250°C temperature. After fabrication, the samples were not heat treated.
The heating mode of the samples and its duration were kept constant for 2.5 h
from the time of inclusion prior to loading. The stresses were computed from
the condition of their uniform distribution over the sample cross section and
the equating of the external to the internal torque relative to the mean radius

of the cross section.,

Fig. 3

It is seen from Fig. 1 that it is necessary to utilize a dependence more
complex than (1.1) in order to describe the creep process in a broad range of
stresses. The characteristics B and n, or K and 8, respectively, can be taken as constants only for anarrow
band of stresses. Thus, for example, for a stress level on the order of 14 kg/mm? under pure tension, and
on the order of 8 kg/mm? for pure torsion, we find from Fig. 1 in application to the first of the dependences
(1.1)

n=6, By,=13.101, B_=865.10° [mm" /kg"-h] {1.6)

Taking the potential function in the form (1.4) and taking account of the axial symmetry of the material,
the coefficients in the quadratic form Ty, which is an application to the description of creep under tension
and forsion

Ty = (Agy H{Asg)0? + 247°
are determined in terms of the quantities (1.6) [1]:

A, -+ Ass = [Bg / (n + 1) /") = 0.86.1072, 24=[B, [ (n + )] —2.85.10- 1.7

Figure 2 presents results of experiments on the creep of tubular samples of this material under com~
bined tension and torsion, conducted at the same temperature according to the 1 kg/mm? loading program
mentioned in Table 1. The open circles on the graphs denote the axial strain €, and the dark circles denote
the shear strain vy, while the time is indicated in hours. The number of the experiment corresponding to
Table 1 is noted in the squares. The solid and dashed lines here indicate the computed values, respectively,
of the same strains obtained by means of (1.4) with the coefficients (1.7). It is seen from the graphs and
Table 1 that, on the whole, the values of the computed creep strain rates nij in the steady-state stage are
similar to the experimental values of the rates ni;*.

Because of (1.4), the creep-strain-rate vector at any point of the stress state in the ¢ r plane should
be orthogonal to the surface & =const passing through this stress point.
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TABLE 1 7 In the coordinate system o, [24y/(Ag +A4s) /2 T the
. . equation &, =const will map a circle. Setting aside points
) .7 408 | 0y 108 2n 103 | 21m-103 |Wy,- 103 . . N
u sz with stress components for which the experiment has been
. 111418 | — 145 [ 1.1 . — | 16.3 conducted ~ the quantitieSw[2A12/(A22 +A33) ]1/21]11* and 21’12*
2(13.80 | 1.82 | 1.05|1.03] 0.50 | 0.46 | 15.4 i i i
314235 | 385 | 0'05 |ogs| 1.0 | 009|156 fneasured a.long thﬁe hor1zo¥1ta1 and vertical, retczpectlvely,
4110.25|5.401 0.7310.75| 41.40 | 1.40 | 45.0 in theexperiment ~we obtain the resultant strain-rate vec-
5| 7.00|6.80| 0.43|0.53| 1.70 | 1.70 | 14.6 ; inci ; ; i :
81 350|736 | 048 |02 | 240 | 190 | 188 tor, which sh.ould coincide with the radial direction. The
7 —~ |78 — | — 2.10. | 2.00 | 16.4 stress state in each of the experiments presented in Fig. 2

was selected so that it would satisfy the equation &, =const.

Figure 3 presents the shape of this surface, and the points of the stress states at which the experi-
ments shown in Table 1 were conducted are noted. The directions of the resultant creep-strain-rate vec-
tors constructed according to the data of the experiments are indicated here.

Because of the homogeneity of the potential function relative to the stresses, we obtain from (1.4)
Siffij = (n + 1) D2 (1.8)

Therefore, in the stress space the surfaces of constant specific dissipation power ojjnij =W =const
are similar to the surfaces &; =const. The values of the creep strain rates in 1/h measured in the steady-
state creep stage ﬂij* in the experiments, 7ij computed by means of (1.4) with the characteristics (1.6) and
(1.7), and the quantities W, kg/mm? - h calculated by means of the experimental values are indicated in Table
1. Excluding experiment 6, all the values of W; do not emerge beyond the strip of experimental scatter with
respect to the mean value which is customary for creep.

According to [2], for processes with identical values of W; the magnitude of the specific work dis-
sipated during creep

t
A= S 3315t
°

at any time should remain identical down to fracture. By making appropriate constructions according to

the results in Fig, 2, it is easy to see that the A=A (t) diagrams will issue in a compact beam in all the
Creep stages.

These same results were worked out by means of the second of the dependences (1.1) with the poten-
tial flow function &, introduced in the form (1.5). The coefficients in the quadratic form will have other
values as compared with the analogous quantities (1.7), and the shape of the surface $,=const will be dif-
ferent, but a direct computation showed that the stresses satisfying the equations $; =const and &, =const
and having a common point differ within 1% limits. Analogous results with the same order of deviation are
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TABLE 2 obtained also for the ereep strain rate components and for the

stresses satisfying W, =const and W, =const with one common
a T W,-103 -] T W,-10% .
point.
1800 — | 640 | T — |4.24]675 2. Experiments on tubular saraples cut out of a. duralu-
% (73 gﬁ é}% gg :7, g g‘gg 186 %2% min slab in the rolling direction were carried out by an anal-
4] 5.66 13.00]61.2 )40 4.95| 262 %1.9 ogous program [1]. The slab is 20 mm thick, and in contrast
g g 82 2:?8 52 8 ié 3f8 33? 2%3 to the samples from the preceding section, the outer and inner

diameters of these tubes were 16.5 and 15 mm, respectively.

Describing the one-dimensional creep of the material by the first of the dependences (1.1} and as-
suming the existence of a creep-strain-rate potential function in the form

F oo Z’(n*‘ﬂ&f i = ar 36.;5
T = Cp (o0 = 58)® + Caz (S35 — 5u1)® + Cos (011 — 2)® +- 2C010001° -+ 2008305 -+ 2Camme? (2.1

as applied to the description of results of experiments onan orthotropic material under simultaneous ten-
sion and torsion, we obtain
M = (n -+ 1) [{Cas + Cis) 6* 4 (2C12 8in? @ + 2C13 cos? @) 12} (0o 4 Cam) 5

(2.2)
dY [dt = (n 4 1) [(Cra - Cae) & - (2C12 sin® @ - 2C3s cos? @) 2] D2 (201 5in® @ 4 2C1s cos? @) ©

Here oyy =—7 sin ¢, 033=T cos ¢, the angle ¢ is measured from the second direction.

It follows from (2.2) that the rates 1y and dy/dt at each point of an annular section are distinct, Be-
cause the tube ends are stiff and therefore under the conditions of the experiment the axial rates nyy should
not depend on ¢ under combined tension and torsion, the expression

(2€y, sin® @ + 20y, cos? git® = &°

should not depend on ¢, while 7 and y themselves depend on ¢. The magnitude of the shear y averaged over
the contour is usually measured in experiment, which permits utilization of average values of the quantity
T over the contour and

(2Cyy sin2 @ -+ 2Cy, cos? @) = 2C

From the results of creep experiments on the samples cut out in the longitudinal direction and sub-
jected to tension at a 200°C temperature it is found [1] that

n=8, Cyu+ Cy= 0.87-10~" {2.3)

and from experiments on the pure torsion of tubular samples cut out in the same direction there has been
found the average value of the coefficient 2C for a shear stress T in the quadratic form T as

2C = 341070 [mm®Wkgl. pj¥vn (2.4)

Experiments on a complex stress state have been conducted on the kg/mm? loading program indi-
cated in Table 2 and in contrast to the experiments of the preceding section were continued far beyond the
limits of the second stage of creep.

The stresses indicated in Table 2 have been selected so that they would satisfy the equation F =const,
where the first seven experiments were conducted under the condition that the points mapping the stress
state lie on a surface F =const passing through the point o=8 kg/mm?, T =0 while the mapping points in the
remaining five experiments lie on a surface passing through the point ¢=7 kg/mm?, 7=0. The creep-strain-
rate vectors, constructed at appropriate points of the stress state, agree sufficiently well with the direction
of the normal to the surface at these points, Moreovef, in the experiments with constant stresses the ratio
between the strain components in the steady-state stage according to (2.2) equals the ratio between the creep~
strain-rate components:

e/pP=0/35T1 {2.5)

and this quantity remained constant in all three stages down to fracture. This latter circumstance indicates
that the initial anisotropy originating in the material because of technological freatment does not change
during creep until the complete disappearance of the total efficiency of the material.
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Table 2 presents values of the dissipation intensity W, =<Tij’?ij* in the steady-state stage of creep,
calculated from experimental results, and graphs of the work A=A (1) dissipated during creep are con~
structed in Fig. 4, where the numbers on the diagram correspond to the numbers of the experiments inTable
2. This material is quite viscous,and the strains reached high values and were computed by means of the
dependences

=@/, =¥/ lyexpe)

where 1, is the initial sample length,  is the angle of twist of the tube, and r is the mean radius. More-
over, the area of the sample cross section was converted for every 2% strain from the condition of incom-
pressibility of the material, and the axial loading and torque were diminished in order to maintain constant
values of ¢ and 7. The experiment was curtailed when strains on the order of 20% were reached. On the
whole, all the diagrams proceed in a sufficiently compact bundle practically to fracture. (In the pure-tor-
sion and almost-pure-torsion experiments, a torsional buckling of the tubular sample was observed until
the disappearance of the efficiency of the material.) From Table 2 and the graphs of Fig. 4 it is easy to
establish that for any level of the dissipated specific work, the ratio of the appropriate times t,/t; remains
constant in all stages of creep and agrees with the magnitude of the reciprocal ratio of the mean specific
dissipation intensities W#)/W(2), Therefore, the conclusion that the time of viscous fracture during creep
is inversely proportional to the values of the specific dissipation intensities in the steady-state stage, which
has been verified for uniaxial loading [2], is valid also for the case of the plane stress state and once more
confirms the hypothesis that the specific work dissipated during creep is one of the governing parameters
of the viscous fracture of a material, including even anisotropic material.

The results obtained confirm the incontrovertibility of the hypothesis on the existence of creep-strain-
rate potential functions and its acceptability to describe processes in anisotropic media,
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