
CREEP OF INITIALLY ANISOTROPIC UNHARDENED MATERIALS 

O. V. Sosnin 

Utilizing the hypothesis of the existence of a creep-s t ra in-ra te  potential and assuming it a function 
of the mixed invariant of the s t r e s s  tensor  and the tensor  of the anisotropic charac te r i s t i cs  of the mater ia l ,  
we show the possibil i ty of an approximate descript ion of the steady creep of a certain class  of anisotropic 
mate r ia l s ,  and we c a r r y  out an experimental  ver i f icat ion of the dependences obtained for the case of creep 
of tubular samples  under tension and torsion.  

1. The steady creep of mater ia l s  under uniaxial loading is usually descr ibed by dependences of the 
form 

~1 = Ban, TI = Ke~ (1.1) 

Here ~? is the creep s t ra in  ra te ,  ~ is the s t r e s s ,  B and n or  K and/3, respect ively ,  are the exper i -  
mental  cha rac te r i s t i c s  of the mater ia l .  Anisotropy in the behavior of a mater ia l  in a description of creep 
can be manifest  both in a change of one of the charac te r i s t i c  quantities in (1.1) depending on the orientation 
of the applied loading vec to r  in the solid and in their  simultaneou~ variat ion.  

Let us examine a s impler  case of anisotropy when the charac te r i s t i c  B or  K, respect ively,  changes 
in (1.1) and the mater ia l  behaves identically under creep tension and compress ion.  The creep of such ma-  
te r ia l s  can be descr ibed by introducing a s t ra in-ra te  potential in the form 

r = ( ~-~L)~ (S) '/'("+I), qlj-o~aOz (1.2) 

if the f i r s t  of the dependences (1.1) is taken as the initial dependence and 

@2 = ~"~--} exp (~1S%,) qi j  - -  O~ij 

S = 3(~ijo<Iij % r ~ = zij -- zb 81jzkk (1.3) 

if the second of the dependences (1.1) is taken as initial dependence. 

Here T 2 has an analogous form with other coefficients Aij. Hence, in conformity with the s t ruc ture  
of (1.1), the potential functions (1.2) and (1.3) consis t  of the product  of two functions: a homogeneous func- 
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tion of ze ro  power in the s t r e s se s  (T/S) m taking into account the anisotropy 
of the mater ia l  in t e rms  of the coefficient B or  K, and a power- law or  ex- 
ponential function with' isotropic charac te r i s t i c  n or/31. Exponent m can be 
selected arb i t rar i ly ;  in par t icular ,  it is expedient to take m =1/2 (n +1) in (1.2) 
and m = l  in (1.3), and the dependences (1.2) and (1.3) finally become 

@z = Tz 'l'(~+z) , ~hj = 0Oz / ~ j  (1.4) 

@~ = exp (~1S '/') T2 / S, ~ j  = 0@2 / O~ij (1.5) 

Figure 1 presents ,  in a logari thmic coordinate system, resul ts  of ex-  
per iments  in the form of a dependence of the magnitude of the steady creep 
rate in the axial direction de/dt  =- 711 on the s t r e s se s  in tubular samples under 
pure tension (upper graph) and of the shear  ra te  dy/dt  -- 2~i 2 on the magnitude 
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of the tangent ia l  s t r e s s  ~ under  pure  t o r s i on  (lower graph) .  Tubular  s a m p l e s  
of 20 and 18 m m  ou te r  and inner  d i ame te r ,  r e s pe c t i ve l y ,  and 80 m m  length  of 
the work ing  sec t ion  we re  f a b r i c a t e d  f rom a 30- ram-d iamete r  D16T rod  a n d t e s t e d  
at  a 250~ t e m p e r a t u r e .  After  f abr ica t ion ,  the s amples  w e r e  not heat  t r e a t e d .  
The heat ing mode of the s a m p l e s  and i ts  dura t ion were  kept  constant  for  2.5 h 
f rom the t ime  of inc lus ion p r i o r  to loading.  The s t r e s s e s  we re  computed  f rom 
the condit ion of t he i r  uni form d is t r ibu t ion  over  the sample  c r o s s  sec t ion  and 
the equating of the ex t e rna l  to the in te rna l  torque r e l a t i v e  to the mean  r a d i u s  

of the c r o s s  sec t ion .  

It is  seen  f rom Fig .  1 that  it is  n e c e s s a r y  to u t i l ize  a dependence m o r e  
complex than (1.1) in o r d e r  to d e s c r i b e  the c r e e p  p r o c e s s  in a b r o a d  range  of 

s t r e s s e s .  The c h a r a c t e r i s t i c s  B and n, or  K and f l , r e spec t ive ly ,  can be taken as  cons tants  only for  a n a r r o w  
band of s t r e s s e s .  Thus,  for  example ,  for  a s t r e s s  l eve l  on the o r d e r  of 14 k g / m m  2 under  pure  tension,  and 
on the o r d e r  of 8 k g / m m  2 for  pure  to r s ion ,  we find f rom Fig.  1 in appl ica t ion  to the f i r s t  of the dependences  

(1.1) 
n = 6, B a = t.3.10 -1~ B~ = 8.65.t0 -9 [mmZn/kg n.h] (1.6) 

Taking the potent ia l  function in the fo rm (1.4) and taking account  of the axia l  s y m m e t r y  of the m a t e r i a l ,  
the coeff ic ients  in the quadra t ic  f o rm  Ti, which is  an appl ica t ion  to the desc r ip t ion  of c r e e p  under  tens ion  
and t o r s i on  

Tz = (A22 +[A~s)(;2 + 2A12 "r 

a r e  d e t e r m i n e d  in t e r m s  of the quant i t ies  (1.6) [1]: 

A,~ + A~ = [B a / (n + t)] ~/(~+z) = 0.86. t0 -3, 2A1~:= [B, / (a + 1)] */(n+z) -- 2.85.t0-~ (1.7) 

F igure  2 p r e s e n t s  r e s u l t s  of e x p e r i m e n t s  on the c r e e p  of tubular  s a m p l e s  of th is  m a t e r i a l  under  com-  
bined tens ion  and to r s ion ,  conducted at the same t e m p e r a t u r e  accord ing  to the 1 k g / m m  2 loading p r o g r a m  
ment ioned in Table  1. The open c i r c l e s  on the graphs  denote the axia l  s t r a i n  5, and the dark  c i r c l e s  denote 
the s h e a r  s t r a i n  T, while the t ime is ind ica ted  in hours .  The number  of the expe r imen t  co r r e spond ing  to 
Table  1 is  noted in the s q u a r e s .  The so l id  and dashed  l ines  here  indicate  the computed va lues ,  r e s p e c t i v e l y ,  
of the same  s t r a i n s  obta ined by means  of (1.4) wi th  the coeff ic ients  (1.7). It is  seen f r o m  the g raphs  and 
Table  1 that,  on the whole,  the va lues  of the computed  c r e e p  s t r a i n  r a t e s  Uij in the s t e a d y - s t a t e  s tage a r e  
s i m i l a r  to the e x p e r i m e n t a l  va lues  of the r a t e s  ~ij*- 

Because  of (1.4), the c r e e p - s t r a i n - r a t e  v e c t o r  at  any point of the s t r e s s  s ta te  in the (r "r plane s h o e d  
be or thogonal  to the su r face  ~1 =cons t  pass ing  through this  s t r e s s  point.  
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TABLE 1 

t4.18 
13.80 
t2.35 
10.25 
7.00 
3.50 

3.85 
5.40 
6.80 
7.56 
7.8t 

* ~1*' i0 ~ 11" iOa 

t.t5 t . t t  
t.05 t.03 
0.95 0.93 
0.73 0.75 

0.43 0.53 
0.t8 0.26 

2~12-i0a 

070 
t.00 
t .40 
t. 70 
2.40 
2.10. 

2~,~. i 0  3 

o:i6 
0.99 
t.40 
t.70 
1.90 
2.00 

WI~. t0 3 

i6.3 
15.4 
i5.6 
~5.0 
t4.6 
t8.8 
16.4 

In the coordinate sys tem ~, [2A12/(A22 +A33)]1/2 T the 
equation r =const  will map a c i rc le .  Setting aside points 
with s t r e ss  components for which the experiment  has been 
conducted - the quantities [2A12/(A22 +A33 ) ]1/2~?11. and 27/12. 
measured  along the horizontal  and ver t ical ,  respect ively,  
in the experiment - w e  obtain the resul tant  s t ra in-rate  vec -  
tor ,  which should coincide with the radial  direction. The 
s t r ess  state in each of the experiments  presented in Fig. 2 
was selected so that it would satisfy the equation r = const. 

Figure 3 presents  the shape of this surface,  and the points of the s t r e ss  states at  which the exper i -  
ments  shown in Table 1 were  conducted are  noted. The direct ions of the resul tant  c reep-s t ra in- ra te  vec -  
to rs  const ructed  according to the data of the experiments  are  indicated here.  

Because of the homogeneity of the potential function relat ive to the s t r e s ses ,  we obtain f rom (1.4) 

Therefore ,  in the s t r e s s  space the surfaces  of constant specific dissipation power (rij~?ij--Wl =const  
are  s imi la r  to the sur faces  r =const .  The values of the creep s t ra in  ra tes  in 1/h measured  in the s teady-  
state creep stage ~?ij* in the experiments ,  ~? ij computed by means of (1.4) with the charac te r i s t i cs  (1.6) and 
(1.7), and the quantities W 1 k g / m m  2 �9 h calculated by means of the experimental  values are  indicated in Table 
1. Excluding experiment  6, all the values of W 1 do not emerge  beyond the s tr ip of experimental  sca t te rwi th  
respec t  to the mean value which is cus tomary  for creep.  

According to [2], for p rocesses  with identical values of W 1 the magnitude of the specific work dis-  
sipated during creep  

f 

i ZiJT]ijdt A 
0 

at any t ime should remain  identical down to f rac ture .  By making appropriate  construct ions according to 
the resu l t s  in Fig. 2, it is easy to see that the A =A (t) d iagrams will issue in a compact  beam in all the 
creep s tages .  

These same resul t s  were  worked out by means of the second of the dependences (1.1} with the poten- 
tial flow function r introduced in the fo rm (1.5). The coefficients in the quadratic form will have other 
values as compared  with the analogous quantities (1.7), and the shape of the surface r =const  will be dif- 
ferent ,  but a d i rec t  computation showed that the s t r e s ses  satisfying the equations r  = const and r = const  
and having a common point differ within 1% l imits .  Analogous resul ts  with the same order  of deviation are  
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TABLE 2 

I 8 . 0 0  
2 7.7i 1.12 
3 6.91 2.13 
4 5.66 3.00 
5 3.98 3.68 
6 2.06 4.10 

~v~'iO ~ 1 

64.0 
65.7 7 
69.7 i9 
6t.2 
7t.0 11 
64.0 i2 

770 
6.05 
4.95 
3.48 

4.2~ 

2.62 
3.22 
3.7i 

W~. tO ~ 

67.5 
24.2 
24.8 
21.9 
23.7 
25.9 

obtained also for the c reep  s t ra in  ra te  components and for  the 
s t r e s s e s  sat isfying W 1 =coas t  and W 2 =coas t  with one common 
point. 

2. Exper iments  on tubular samples cut out of a dura lu-  
min slab in the rolling direction were c a r r i e d  out by an anal-  
ogous p r o g r a m  [1]. The slab is 20 mm thick, and in con t ras t  
to the samples f rom the preceding section, the outer  and inner 
d iameters  of these tubes were  16.5 and 15 ram, respect ive ly .  

Describing the one-dimensional  c reep  of the mater ia l  by the f i r s t  of the dependences (i.i) and a s -  
suming the existence of a c reep-s t ra in- ra te  potential function in the fo rm 

as applied to the description of results of experiments on an orthotropic material under simultaneous ten- 
sion and torsion, we obtain 

l ln~-(rt+t)[(C~z-~Cs~)~+(2C12sin~c~nu2C13cos~)~:~] (n-1)~ ( C ~ - C ~ ) ~  
(2.2) 

dT / dt = (n -4- i) [(C~2 + C~) ~ + (201~ sin ~ ~ + 2C13 cos~ ~) ~] (~-~)/~ (2C,~ sing ~ + 2C~ cos~ ~p) 

Here  u~2 = - ~  sin ~0, u~  =T COS ~V, the angle ~ is  m e a s u r e d  f rom the second direct ion.  

It  follows f r o m  (2.2) that  the r a t e s  ~ll and d2ffdt at  each  point of an annular  sect ion a r e  dist inct .  Be-  
cause the tube ends a re  stiff and therefore  under the conditions of the experiment  the axial r a tes  1}i I should 
not depend on ~v under combined tension and tors ion,  the express ion 

should not depend on (p, while ~- and 7 themselves  depend ca ~p. The magnitude of the shear  y averaged  over  
the contour is usually measured  in experiment ,  which permi t s  utilization of average values  of the quantity 
T over the contour and 

(2c~ sin ~ q~ ~- 2c~ cos~ ~) ~ 2C 

F r o m  the  resu l t s  of c reep  exper iments  on the samples cut out in the longitudinal direct ion and sub- 
jected to tension at a 200~ t empera tu re  it is found [1] that 

n = 8, Cn + C ~  = 0.87.10 ''~l. ( 2 . 3 )  

and f r o m  exper iments  on the pure tors ion  of tubular  samples  cut out in the same direct ion there  has been 
found the average  value of the coefficient 2C for  a shear  s t r e s s  ~- in the quadratic form T as 

2C = 3A. 10 -% [mm~n/kg n �9 hi ~/(~+~) (2.4) 

Exper iments  on a complex s t r e s s  state have been conducted on the k g / m m  2 loading p r o g r a m  indi- 
cated in Table 2 and in cont ras t  to the experiments  of the preceding section were continued far  beyond the 
l imits  of the second stage of creep.  

The s t r e s s e s  indicated in Table 2 have been selected so that they would satisfy the equation F =coas t ,  
where  the f i r s t  seven experiments  were  conducted under the condition that the points mapping the s t r e s s  
state lie on a surface F =coas t  pass ing through the point u = 8  k g / m m  2, ~=0  while the mapping points in the 
remaining five exper iments  lie on a surface passing through the point ~=7  kg/mm2, ~ =0. The c reep - s t r a im 
ra te  vec to r s ,  cons t ruc ted  at  appropr ia te  points of the s t r e s s  state,  agree  sufficiently well  with the direct ion 
of the normal  to the surface  at these points.  Moreover ,  in the exper iments  with constant s t r e s s e s  the ra t io  
between the s t ra in  components in tim s teady-s ta te  stage according to (2.2) equals the ra t io  between the c reep-  
s t ra in- ra te  components :  

~/~ = cr / 3.57 ~ {2.5) 

and this quantity remained  constant  in all th ree  stages down to f rac ture .  This la t ter  c i rcumstance  indicates 
that the initial anisotropy originating in the mater ia l  because of technological t rea tment  does not change 
during creep  until the eomplete disappearance of the total efficiency of the mater ia l .  
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Table 2 p resen ts  values  of the dissipation intensity W 2 =ffijl?ij* in the s teady-s ta te  stage of c reep ,  
calculated f r om exper imenta l  r e su l t s ,  and graphs of the work A =A (t) dissipated during c reep  a re  con-  
s t ruc ted  in Fig.  4, where  the numbers  on the d iagram cor respond  to the numbers  of the exper iments  inTable  
2. This  ma te r i a l  is quite v iscous ,and the s t ra ins  r eached  high values  and were  computed by means of the 
dependences 

where  l 0 is the initial sample length, ~ is the angle of twist of the tube, and r is the mean radius .  More-  
over ,  the a rea  of the sample cross  section was conver ted for eve ry  2% s t ra in  f rom the condition of incom- 
press ib i l i ty  of the mate r ia l ,  and the axial loading and torque were  diminished in o rder  to maintain constant 
values  of ff and ~-. The exper iment  was cur ta i led  when s t ra ins  on the o rde r  of 20% were  reached.  On the 
whole, all the d iagrams p roceed  in a sufficiently compact  bundle prac t ica l ly  to f rac tu re .  (In the pure - to r -  
sion and a lmos t -pu re - t o r s i on  exper iments ,  a to rs iona l  buckling of the tubular sample was observed  until 
the disappearance of the eff iciency of the mater ia l . )  F r o m  Table 2 and the graphs of Fig. 4 it is easy  to 
es tabl ish  that for  any level  of the dissipated specif ic  work,  the ra t io  of the appropria te  t imes  t2/ t  1 r emains  
constant in all  s tages of c reep  and agrees  with the magnitude of the rec ip roca l  ra t io  of the mean specific 
dissipation intensit ies W(1)/W (2). The re fo r e ,  the conclusion that the t ime of viscous f rac tu re  during c reep  
is inverse ly  propor t ional  to the values  of the specif ic  dissipation intensit ies in the s teady-s ta te  stage, which 
has been ve r i f i ed  for  uniaxial loading [2], is valid also for  the case of the plane s t r e s s  state and once more  
conf i rms the hypothesis  that the specif ic  work dissipated during c reep  is one of the governing p a r am e te r s  
of the viscous f r ac tu re  of a mate r ia l ,  including even anisotropic  mater ia l .  

The r e su l t s  obtained conf i rm the incontrover t ibi l i ty  of the hypothesis  on the exis tence of c reep-s t ra in-  
r a t e  potential  functions and its acceptabil i ty to descr ibe  p ro ce s se s  in anisotropic  media .  

l .  
2. 
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